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Motivation

Standard cross-validation (CV) may result in a deceptive evaluation
of the generalization error(GenErr) when the correlation structure
within the training data does not match that between test data
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Such changes in correlation may occur
in real-world situations:
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* Data sets with clustered structures. ] T

= Spatially-informed data sampling.

= Temporal-informed data sampling.
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A recently introduced method addresses these issues by measuring and correct-
iIng bias in standard CV, focusing on linear models with squared loss.

We suggest a bias-corrected CV estimator that can be applied to any learning
model, including deep neural networks, and to standard criteria for prediction
performance for classification tasks.

Modeling the correlation with random effects

We consider a comprehensive framework that includes the GLMM

and more advanced models like deep neural networks and decision
trees.

Random effects
distributed with parameters vy,

P(Yie = 1|Xte , 6te) = g(f(Xte) + O¢e )

P(y; = 1|x;,67) = g( f(x;) + 671, )

Nontrivial function
with parameters y,

Prediction point

In the case of data with spatial structure, the covariance between two observa-
fions is defined by a kernel function K(z;,, 2;,), on pairs of coordinates. In partic-
ular:
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f the data is gathered from randomly chosen geographical areas, this typically

eads to a stronger correlation between observations within the training set com-

pared to those from different sets.

Decomposing the loss function L in classification

Our observation: Any loss function L(y,y) : {0,1} x R — R that
assesses the discrepancy between the actual response variable y
and the predicted value g, can be decomposed as follows:
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This can be illustrated on standard classification settings:

1. The output g € (0, 1) aims for the probability that y = 1, and the performance is measured by
the cross entropy loss. In this case, we can write:
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Ly, 9) = —y - log(§) — (1 —y) - log(1 — §) = _log(1 — §) — log (1 3 y) Y.
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2. The output € {0, 1} is the best guess for the actual value of y, and the performance is

measured by the zero-one loss. \We can express this as follows:

Ly, g)=y-0=9)+0-y)-9=_09_ —20—-1) v
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3. The output g € {—o00, 00} is some score in favor of y = 1, and the performance is measured

by the Hinge loss. In this case, the penaltyiszeroify=1and g > 1, ory=0and g < —1, and

increases linearly in g otherwise. This can be expressed as follows:
L(y,9) =y -RelU(1 =) + (1 —y) - ReLU(1 4 7) =
RelU(1 +§) — [ReLU(1 +§) — RelLU(1 — §)] - v.
Li(9) L(j)

github.com/OrenYuv/CVc-for-General-Models

Key result: Formulation of CV bias in classification

The term w,, 1s defined as the bias of the CV estimator relative to
the generalization error, and we provide an explicit expression:
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his key result applies to any decomposable loss function and
makes no assumptions about the learning model.

Given an estimator w,, of w,,, the corrected CV estimator is:
CV,.=CV + w,,.

Methods for estimating w.,

We suggest a parametric bootstrap in which we utilize estimates 4. and 4, of the
true parameters that can be obtained from the training sample T'.

Initially, it is essential to simplify the formula for w,., according to the given sce-
nario to eliminate the expectation over the unobserved ..

In the scenario of spatial correlation, we suggest the following simplified formula:
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where K is the estimated average kernel value between two observations from
distinct regions.

This brings us to the subsequent bootstrap algorithm:

1. BEvaluate estimates of the unknown parameters, denoted by 4., and 4.
2. Forb=1,---, B:

2.a. Draw &, ~ MN(0, K), and draw Y, from Bernoulli distribution with mean g (f5.(X) + o)

2.b. Apply the learning procedure to Ty, _; = (X_;, Y3 —;), and calculate I ; = Lo(§(xy; Ty, —;)), for any 4.
3. Calculate the sample covariance: C; = &S0 (I; — 1) (yoi — Ti)-
4. Calculate the mean: @, =+ 3", C.

n

To address the demand for considerable computing powe in Step 2.b., we suggest an approximate
estimate of [, ;, instead of the full fitting process!
/_ I GLMM )

We view the last layer as a GLMM, while the
rest of the network is fixed.

Then, we approximate the GLMM estimator 3 @ > [0
by embracing quadratic approximation of the ' u .
Quasi-Likelihood equations: / |
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i =B |g(al + 6)|X: 8,4 | 5 Dy =Bg |/ (a8 +8)X: 8,4 1 V = Cov(Y|X;8,5).

Experiments

We demonstrate the application of the proposed methodology in various sce-
narios by comparing the standard CV estimator to our proposed approximated
estimator CV,. = CV + w,,. The comparison focuses on deviation from the true
GenErr and the model selection strategy.
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Takeaway
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We have shown that CV can be adjusted to consider correlation patterns in the
data. Our approach has been validated through simulations and real-world data
applications.

Our approach relies on a thorough examination of how covariance structures
impact model evaluation, leading to an explicit formula for the bias between
standard CV and generalization error, and a practical estimation methodology.

The outlined methodology is applicable not only to classification using standard
evaluation metrics but also to the evaluation of the area under the ROC curve
(AUC) and to non-linear regression models, as detailed in arXiv:2502.14808.
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