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Our goal is to estimate heterogeneous treatment effects (HTE) - the way Effect  Effect Effect
treatments impact different subgroups - in time-to-event data.
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Conclusion

This work presents MISTR - a novel non-parametric approach for estimating HTE and its variance in survival data:

e MISTR eliminates the need for estimating the censoring mechanism and thus expands the range of cases that can be effectively addressed.

e MISTR outperforms other existing approaches, especially in heavy censoring rates.

e MISTR can incorporate an instrumental variable for estimating HTE in presence of unobserved confounding.

The paper includes additional simulations with realistic covariates, variance sensitivity analysis, weak istrument evaluation, and a real-world use case with
unobserved confounding using data from the Illinois Unemployment Insurance Experiment.
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