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Abstract

Dust events, presenting a health risk and an economic burden potentially exceeding hundreds of millions of dollars
annually, necessitate a comprehensive understanding to facilitate precise and prompt forecasting. Such knowledge aids In
Impact mitigation and enhances societal safequards. In this study, we offer an innovative climatological insight into the
correlation between weather systems and dust transportation by methodically categorizing dust events. An 18-year
compilation of ground PM,, measurements In Israel, coupled with atmospheric reanalysis data, form the basis of our novel,
unsupervised classification method for dust events in the Eastern Mediterranean. Further, we introduce a meteorological
deep multi-task learning strategy for dust event forecasting. This approach integrates both the forecasting of local PM,,
(primary task) as observed in situ, and the simultaneous prediction of the satellite-assisted regional PM,, (auxiliary task),
thereby leveraging correlated task information.
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Figure 1. At each timestamp, a meteorological Iinput tensor, time Figure 2. Recall and precision of local dust event (PM,,>65.2) forecast
feature, and In-situ PM,, level are channeled into an encoder for increasing lead time.
network, which consequently generates a code. These codes are

then forwarded to the decoder network, yielding regional PM,, o
predictions. Simultaneously, the classifier network utilizes the < .
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space, thereby using Integrated gradients.
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Figure 4. Unsupervised classification method’s overview: A. dust event definition yielding 356 event; B. compression of the events’ CAMS
PM,, map timeseries; C. clustering and labeling of the compressed timeseries; and D. composite examination of the clustered events
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