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Motivation: Human annotated data of subjective

labels can have correlations between observations, these correlations can be
addressed as different biases each annotator has.

We would like to suggest a way to remove the biases and to generalize to
new, unobserved annotators.

Our data points are sentences of interviewees which were embedded using
an LLM, each was human-annotated by psychology students. Those
annotations are subjective as we can see in the figures below.
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Ordinal Regression Neural Networks

Defined as a multilabel task where each label k is the
indicator “is the ordinal value larger than k?”
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Consistency:

Can force consistency
by adding non-shared
Biases (CORAL).

LossS:

K-1
L= BCE(y",a(6 - by))

Weight sharing
across K — 1tasks

Suggested Framework:

Integrate random intercepts into ordinal regression NNs by inserting a
second input to the CORAL architecture.
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Loss = Weighted Sum of Binary-Cross-Entropy over the Labels
Z = Une Hot Encoding matrix of the REandom Effects

X = Numeric Features Matrix

W, U, b = Learnt weights and Biases of the model
Ply; > k) = a(g(xi, Z; U, W) + by)
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Simulation Results:
(MAE between the predicted and the real, ordinal values)
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Random Intercepts:

Green Jr and Tukey [1960] explained when an effect is random, rather than
fixed: “A model will be presented for these data that includes populations of
P persons, T tests, and two halves. Then we can treat the experimental
persons and the tests as samples from the populations of persons and tests.
When a sample exhausts the population, the corresponding variable is fixed;
when the sample is a small (i.e., negligible) part of the population, the
corresponding variable is random”.
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yi j: outcome for observation i, by annotator j
g(x; j;0): some function (NN for example)
b;~N (O o ) random intercept for annotator j

el,] ~N(0,0%): noise

Real Data Results: (MAE between predicted and annotated)

Emotion | Regression NN | CORAL | CORAL w/ RE
[rritation 14-1 (0.03) 1.32 (0.13) 1.3 (0.03)
Nostalgia 8 (0.11) 1.29 (0.16) |  1.24 (0.04)
Pride n Hi] (0.04) | 0.84 (0.0) | 0.8 (0.02)
Relief 0.77 (0.17) 0.67 (0.0) 0.66 (0.01)
Sadness | 1.3 (0.02) | 118 (0.1) | 1.17 (0.05)
Satisfaction 1.02 (0.14) 1.05 (0.0] 0.9 (0.02)
Surprise 0.77 (0.04) 0.7 (0.0) | 0.7 (0.01)

Summary:

* Subjective annotations are frequently ignored in
model development but should be addressed.

* We propose a method for integrating random
intercepts into ordinal regression neural networks,
which improves performance.
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