RGNMR: A Provable Algorithm for Robust Matrix Completion

Eilon Vaknin Laufer Boaz Nadler Weizmann Institute of Science

Robust Matrix Completion (RMC)

Let $X = L^* + S^* \in \mathbb{R}^{n_1 \times n_2}$ where L^* is of rank r and S^* is a corruption matrix with a few non-zero entries at unknown locations. Let $\Omega \subset [n_1] \times [n_2]$ be a subset of observed entries.

Problem: Recover L^* from a subset of observed entries $\{X_{i,j} | (i,j) \in \Omega\}$.

Applications

Recovering a low rank matrix from a subset of its entries has applications in recommendation systems, various problems in computer vision and sensor network localization. A key challenge in these and other applications is that some of the observed entries may be arbitrarily corrupted outliers.

Previous Algorithms

AOP [Yan, Yang, and Osher 2013], RPCA-GD [Yi et al. 2016], RMC [Cambier and Absil 2016], RRMC[Cherapanamjeri, Gupta, and Jain 2017], HUB[Ruppel, Muma, and Zoubir 2020], HOAT [Z.-Y. Wang, Li, and So 2023] and others.

Limitations of Existing Methods

- Require large number of observed entries.
- Require the (often unknown) rank r of L^* , fail when overparameterized even with an input rank of r+1.
- Fail to recover the matrix L^* if it has a moderate condition number, as low as 5.

Our Contributions

- Propose RGNMR, a new RMC method that overcomes the above limitations.
- ullet Developed a scheme to estimate the number of corrupted entries in X
- Derived recovery guarantees for RGNMR which improve upon the best currently known for other (factorization-based) methods.

RGNMR

Working variables: L an estimate of L^* and $\Lambda \subset \Omega$, an estimate of the locations of corrupted entries.

RGNMR iterates these two steps:

- Step I : Given the current set of suspected outlier entries Λ , update L using the remaining entries $\{X_{i,j} \mid (i,j) \in \Omega \setminus \Lambda\}$.
- Step II: given the updated matrix L, recompute the set of suspected outliers Λ , by the k entries with largest magnitude in $\{(L-X)_{i,j} \mid (i,j) \in \Omega\}$

Algorithm - RGNMR

Input:

- $\{X_{i,j} \mid (i,j) \in \Omega\}$ observed entries
- r rank of L^*
- k assumed number of corrupted entries
- $\begin{pmatrix} U_0 \\ V_0 \end{pmatrix} \in \mathbb{R}^{n_1 + n_2 \times r}$ factor matrices of initial estimate of L^* .
- \bullet Λ_0 initial estimate of the set of corrupted entries
- T maximal number of iterations

Output: \hat{L} of rank r

for
$$t = 0 ... T - 1$$
 do

$$\begin{pmatrix} U_{t+1} \\ V_{t+1} \end{pmatrix} = \arg\min_{U,V} \|U_t V^\top + U V_t^\top - U_t V_t^\top - X\|_{F(\Omega \setminus \Lambda_t)}^2$$

$$\Lambda_{t+1} = \arg\min_{\Lambda \subset \Omega, |\Lambda| = k} \|U_t V_{t+1}^\top + U_{t+1} V_t^\top - U_t V_t^\top - X\|_{F(\Omega \setminus \Lambda)}^2$$

end for

return
$$P_r(U_{T-1}V_T^{\top} + U_TV_{T-1}^{\top} - U_{T-1}V_{T-1}^{\top})$$

Estimating the Number of Corrupted Entries

Problem: Finding a tight upper bound on the true number of corrupted entries k^* . **Observation:** Empirically, the estimates Λ_t of the set of corrupted entries converge if and only if $k \leq k^*$.

Our Solution: Binary search for k^* .

Formally, set $k_{\min} = 0$ and $k_{\max} = |\Omega|/2$. Run RGNMR with $k = \lfloor (k_{\min} + k_{\max})/2 \rfloor$. If Λ_t converged, update $k_{\min} = k$. Otherwise, set $k_{\max} = k$. Run till convergence.

Assumptions for Theoretical Analysis

- The underlying matrix L^* has an incoherence parameter μ .
- [Bernoulli Model] Each entry of X is independently observed with probability p.
- In each row and column, the fraction of observed entries which are corrupted is bounded by $\alpha \in (0,1)$.

We denote by $\mathcal{M}(n_1, n_2, r, \mu, \kappa)$ the set of $n_1 \times n_2$ matrices of rank r, incoherence parameter μ and condition number κ .

Theorem (Informal)

Let $X = L^* + S^*$, where $L^* \in \mathcal{M}(n_1, n_2, r, \mu, \kappa)$, $n_1 \ge n_2$. There exist constants C, c_{α} such that : If the fraction of corrupted entries is small enough, $\alpha < \frac{1}{c_{\alpha}r\mu\kappa}$ and the probability to observe an entry is high enough, $p \ge \frac{C\mu r}{n_2} \max\{\log n_1, \mu r \kappa^2\}$, then w.p. at least $1 - \frac{6}{n_1}$, RGNMR with suitable initialization converges linearly to L^* .

Simulations Results

 L^* is a rank 5 matrix of size 3200×400 . The fraction of corrupted entries is $\alpha = 5\%$. The oversampling ratio is $\frac{|\Omega|}{r \cdot (n_1 + n_2 - r)} = 12$ and the condition number is $\kappa = 2$. For any RMC method which outputs \hat{L} , we compute two performance measures:

- (i) Median relative reconstruction error rel-RMSE = $\frac{\|L-L^*\|F}{\|L^*\|_F}$;
- (ii) Failure probability, $\mathbb{P}(\text{rel-RMSE} > 10^{-3})$, error bars of 95% confidence interval. RGNMR is given the true number of corrupted entries k^* while RGNMR-BS is given an estimate of k^* obtained by our binary search scheme.

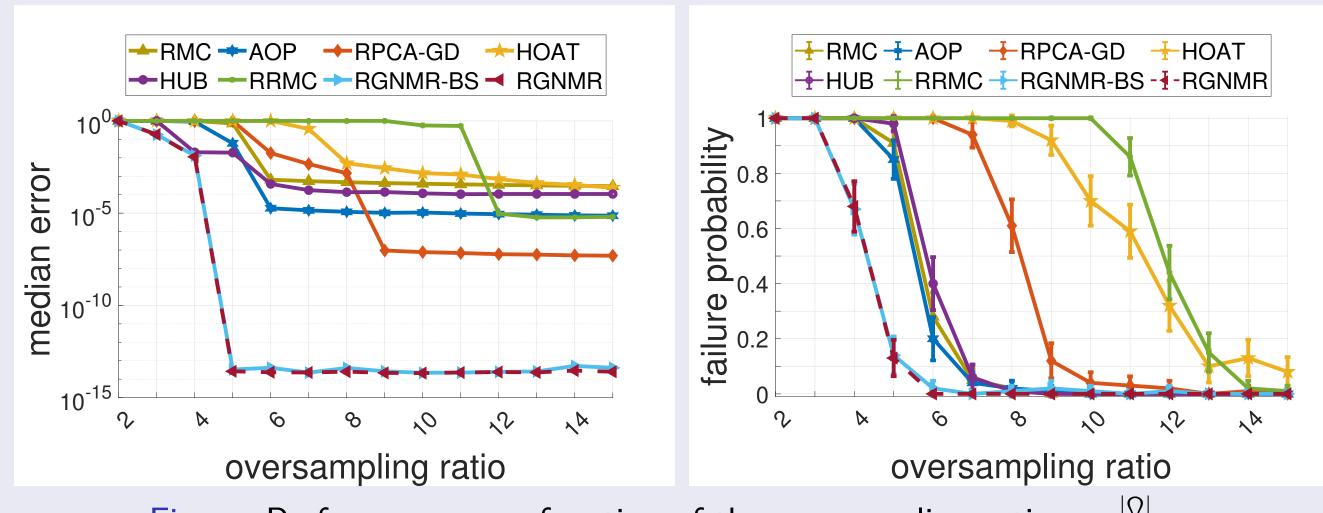


Figure: Performance as a function of the oversampling ratio $\frac{|\Omega|}{r \cdot (n_1 + n_2 - r)}$.

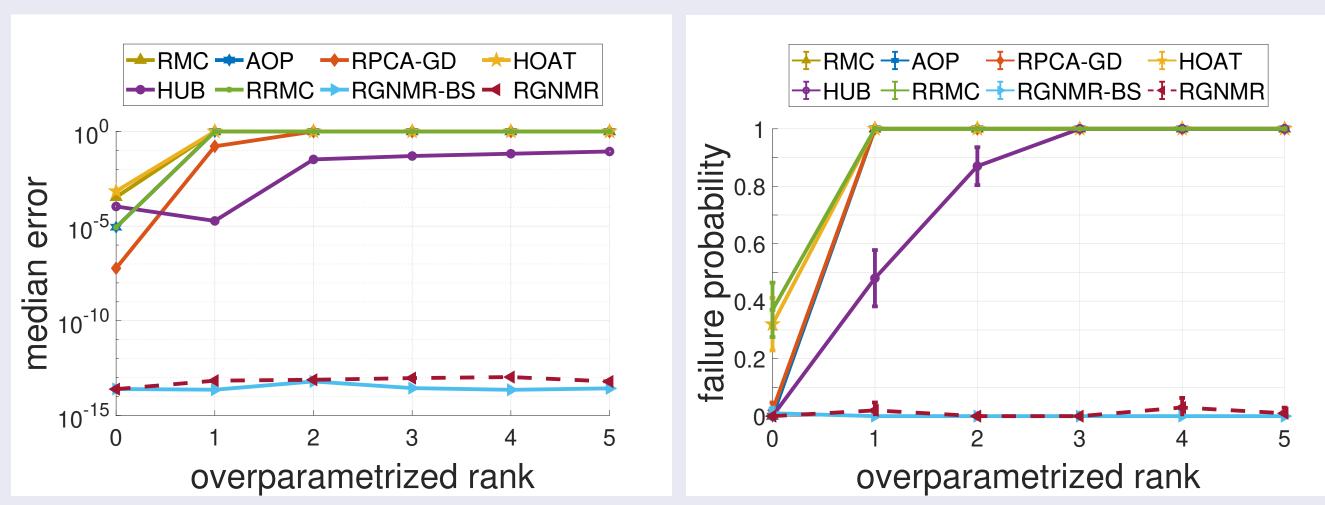


Figure: Performance under overparameterization. The input rank is 5 + i for $i \in [0, 5]$.

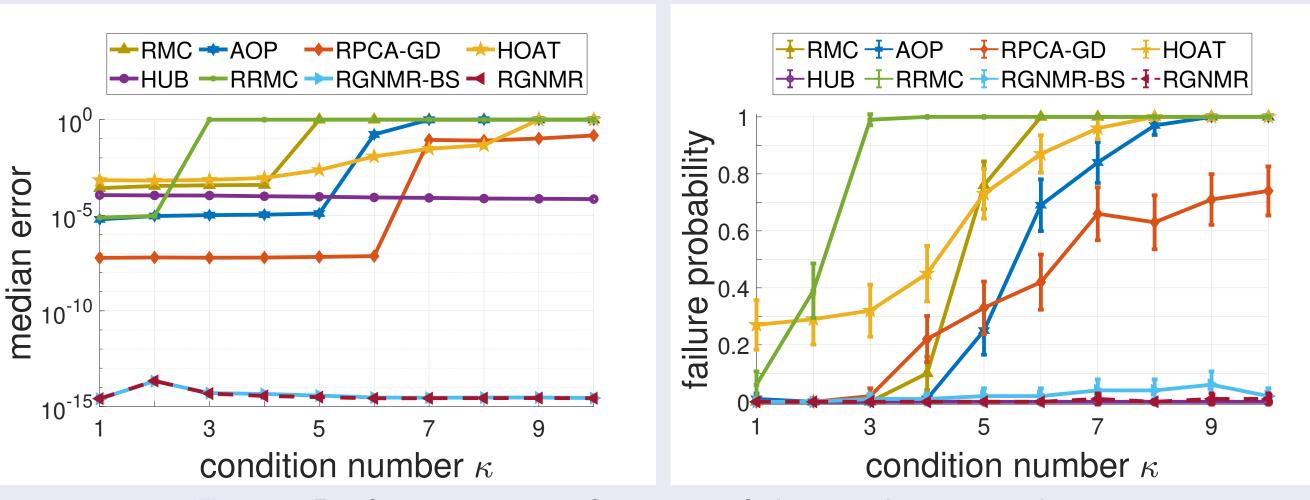


Figure: Performance as a function of the condition number κ .

Additionally RGNMR can handle a large fraction of corrupted entries, non uniform sampling, additive noise and high rank matrices.

Background Extraction

RGNMR also performs well on a real dataset involving background extraction in a video. This is a standard benchmark for RMC methods. The frames in the video can be decomposed to a low rank matrix corresponding to the static background plus a sparse matrix corresponding to the moving foreground.

(a) Original Image (b) Sampled Image

Figure: Background extraction for "Hall" video data. The frames are recovered from 5% of the original entries with an input rank of r=1.

l	Comparison to	o Other Recovery Guarant	tees	
Ì	Method	Method	Sample Complexity	Corruption Rate
١	Type	IVICTIOU	$(pn_2 \geq)$	$(\alpha \leq)$
l		Zheng and Lafferty 2016	$\max\{\mu r \log n_1, \mu^2 r^2 \kappa^2\}$	No Corruption
		Tong, Ma, and Chi 2021	Fully Observed	$\frac{1}{r^{\frac{3}{2}}\mu\kappa}$
	Factorization Based	Cai et al. 2024	Fully Observed	$\frac{1}{r^{\frac{3}{2}}\mu\kappa}$
		Yi et al. 2016	$\mu^2 r^2 \kappa^4 \log n_1$	
		RGNMR	$\max\{\mu r \log n_1, \mu^2 r^2 \kappa^2\}$	$\frac{1}{r\mu\kappa^2}$ $\frac{1}{r\mu\kappa}$
	Full Matrix	Cherapanamjeri, Gupta, and Jain 2017	$\mu^2 r^2 \log^2(\mu r \sigma_1^*) \log^2 n_1$	$rac{1}{r\mu}$
		T. Wang and Wei 2024	$\mu^3 r^3 \kappa^4 \log n_1$	$\frac{1}{r^2\mu^2\kappa^2}$

Table: Recovery guarantees requirements up to constant factors. Weakest conditions in each type of methods are in red bold.