RGNMR: A Provable Algorithm

Eilon Vaknin Laufer

Weizmann Institute of Science

QANNNPopprppp
NN
s l’ ‘

12220
’_‘JR’T

0

for Robust Matrix Completion
Boaz Nadler

WEIZMANN
INSTITUTE
OF SCIENCE

Robust Matrix Completion (RMC)

Let X = L+ 5" € R™*"™ where L* is of rank r and $* is a corruption matrix with a
few non-zero entries at unknown locations. Let Q2 C [ny] X [ny] be a subset of
observed entries.

Problem: Recover L* from a subset of observed entries {X; ;| (i,j) € Q}.

Applications
Recovering a low rank matrix from a subset of its entries has applications in

recommendation systems, various problems in computer vision and sensor network
localization. A key challenge in these and other applications is that some of the
observed entries may be arbitrarily corrupted outliers.

Previous Algorithms

P [Yan, Yang, and Osher 2013], RPCA-GD [Yi et al. 2016], RMC [Cambier and Absil
2016_, RRMC|[Cherapanamjeri, Gupta, and Jain 2017], HUB[Ruppel, Muma, and Zoubir
2020], HOAT [Z.-Y. Wang, Li, and So 2023] and others.

Limitations of Existing Methods
@ Require large number of observed entries.

@ Require the (often unknown) rank r of L*, fail when overparameterized even with
an input rank of r + 1.

@ Fail to recover the matrix L* if it has a moderate condition number, as low as 5.

Our Contributions

@ Propose RGNMR, a new RMC method that overcomes the above limitations.

@ Developed a scheme to estimate the number of corrupted entries in X

Derived recovery guarantees for RGNMR which improve upon the best currently
known for other (factorization-based) methods.

RGNMR

Working variables: L an estimate of L™ and A C €2, an estimate of the locations of
corrupted entries.
RGNMR iterates these two steps :

@ Step | : Given the current set of suspected outlier entries A, update L using the
remaining entries {Xi; | (/,j) € Q\ A}

@ Step ll: given the updated matrix L, recompute the set of suspected outliers A, by
the k entries with largest magnitude in {(L — X);; | (i,j) € Q}

Algorithm - RGNMR

Input:

{Xi; | (i,j) € Q} - observed entries
r - rank of L*

k - assumed number of corrupted entries

U . oL .
(VO> c RMTMmXr factor matrices of initial estimate of L*.
0

Mo - initial estimate of the set of corrupted entries

P
@ [ - maximal number of iterations
Output: L of rank r

fort=0...7T —1do
<5:1> —argpip UV + UV = UV = Xl
A1 = arg /\Cg]\l/(]\ |U:V, +1 + Ur1 VT U, VtT — XH?—‘(Q\/\)
end for
return :Dr(U7'_1\/7—-r + UTV;-F_l — UT_1 V;—r_l)

Estimating the Number of Corrupted Entries
Problem: Finding a tight upper bound on the true number of corrupted entries k™.

Observation: Empirically, the estimates A; of the set of corrupted entries converge if
and only if kK < k™.
Our Solution: Binary search for k*.

Formally, set kynin = 0 and kmax = |2|/2. Run RGNMR with k = | (Kmin + kmax)/2].
If A; converged, update ki, = k. Otherwise, set k... = k. Run till convergence.

Assumptions for Theoretical Analysis

@ The underlying matrix L* has an incoherence parameter L.

@ [Bernoulli Model] Each entry of X is independently observed with probability p.

@ In each row and column, the fraction of observed entries which are corrupted is
bounded by o € (0, 1).
We denote by M(ny, ny, r, i1, k) the set of n; X ny matrices of rank r, incoherence
parameter 1 and condition number k.

Theorem (Informal)

Let X = L* + S*, where L* € M(ny, ny, r, 1, k), ny > ny. There exist constants

C, c, such that : If the fraction of corrupted entries is sma// enough, o < - rllm and

= max{log n, pre®}, then

the probability to observe an entry is high enough, p > > Lur

w.p. at least 1 — n_l’ RGNMR with suitable initialization converges linearly to L*.

Simulations Results

L* is a rank 5 matrix of size 3200 x 400. The fraction of corrupted entries is o« = 5%.
The oversampling ratio is £ )= 12 and the condition number is kK = 2. For any

r-(nm+m—r
RMC method which outputs L, we compute two performance measures:
(i) Median relative reconstruction error re1-RMSE = HLHL*LHEF;

(i) Failure probability, P(re1-RMSE > 10>), error bars of 95% confidence interval.
RGNMR is given the true number of corrupted entries k* while RGNMR-BS is given an
estimate of k™ obtained by our binary search scheme.
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Figure: Performance as a function of the oversampling ratio L
r-(n+na—r)
RMC <-AOP —-RPCA-GD -+ HOAT RMC +AOP —+RPCA-GD —+ HOAT
~-HUB —RRMC ~RGNMR-BS < RGNMR ~+HUB -+RRMC -+ RGNMR-BS -i-RGNMR
0 o o > 1r r o = o 2
10 S S— S
- = 0.8
g 10'5 % i
o Q06"
5 S 0.4l
- — L 4 )
10710 o
= =02
- = = = e == = g = — == = - g ch
10-15 ! ! ! ! ! O ——‘——_4.___‘_-——4_——{
0 1 2 3 4 5 0 1 2 3 4 5

overparametrized rank overparametrized rank
Figure: Performance under overparameterization. The input rank is 5+ i for i € [0, 5].
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Additionally RGNMR can handle a large fraction of corrupted entries, non uniform
sampling, additive noise and high rank matrices.

Background Extraction
RGNMR also performs well on a real dataset involving background extraction in a video.

This is a standard benchmark for RMC methods. The frames in the video can be
decomposed to a low rank matrix corresponding to the static background plus a
sparse matrix corresponding to the moving foreground.

(a) Original Image (b) Sampled Image (c) RGNMR
Figure: Background extraction for “Hall” video data. The frames are recovered from 5% of the original

entries with an input rank of r = 1.

Comparison to Other Recovery Guarantees

Method Sample Complexity Corruption Rate
Method
Type (P2 >) (o <)
Zheng and Lafferty 2016 max{ uur log n1, 1?r°s*}  No Corruption
Tong, Ma, and Chi 2021 Fully Observed 2
. . 21LL
Factorization Cai et al. 2024 Fully Observed .
Based r2 K
Yi et al. 2016 12r2k* log my e
RGNMR max{ ur log ny, rzﬁz} rplm,
Cherapanamjeri, Gupta, , ,, 2 1
I *) | —
I\/IEL’Jclrlix and Jain 2017 ur-log*(uroy) log™ i
T. Wang and Wei 2024 1> ristlog ny rzlulzliz

Table: Recovery guarantees requirements up to constant factors. Weakest conditions in each type of
methods are in red bold.




