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Robust Matrix Completion (RMC)
Let X = L∗ + S∗ ∈ Rn1×n2 where L∗ is of rank r and S∗ is a corruption matrix with a
few non-zero entries at unknown locations. Let Ω ⊂ [n1]× [n2] be a subset of
observed entries.
Problem: Recover L∗ from a subset of observed entries {Xi ,j | (i , j) ∈ Ω}.
Applications
Recovering a low rank matrix from a subset of its entries has applications in
recommendation systems, various problems in computer vision and sensor network
localization. A key challenge in these and other applications is that some of the
observed entries may be arbitrarily corrupted outliers.

Previous Algorithms
AOP [Yan, Yang, and Osher 2013], RPCA-GD [Yi et al. 2016], RMC [Cambier and Absil
2016], RRMC[Cherapanamjeri, Gupta, and Jain 2017], HUB[Ruppel, Muma, and Zoubir
2020], HOAT [Z.-Y. Wang, Li, and So 2023] and others.

Limitations of Existing Methods
Require large number of observed entries.

Require the (often unknown) rank r of L∗, fail when overparameterized even with
an input rank of r + 1.

Fail to recover the matrix L∗ if it has a moderate condition number, as low as 5.

Our Contributions
Propose RGNMR, a new RMC method that overcomes the above limitations.

Developed a scheme to estimate the number of corrupted entries in X

Derived recovery guarantees for RGNMR which improve upon the best currently
known for other (factorization-based) methods.

RGNMR
Working variables: L an estimate of L∗ and Λ ⊂ Ω, an estimate of the locations of
corrupted entries.
RGNMR iterates these two steps :

Step I : Given the current set of suspected outlier entries Λ, update L using the
remaining entries {Xi ,j | (i , j) ∈ Ω \ Λ}.
Step II: given the updated matrix L, recompute the set of suspected outliers Λ, by
the k entries with largest magnitude in {(L− X )i ,j | (i , j) ∈ Ω}

Algorithm - RGNMR

Input:

{Xi ,j | (i , j) ∈ Ω} - observed entries

r - rank of L∗

k - assumed number of corrupted entries(
U0

V0

)
∈ Rn1+n2×r factor matrices of initial estimate of L∗.

Λ0 - initial estimate of the set of corrupted entries

T - maximal number of iterations

Output: L̂ of rank r

for t = 0 . . .T − 1 do(
Ut+1

Vt+1

)
= argmin

U ,V
∥UtV

⊤ + UV⊤
t − UtV

⊤
t − X∥2F (Ω\Λt)

Λt+1 = arg min
Λ⊂Ω,|Λ|=k

∥UtV
⊤
t+1 + Ut+1V

⊤
t − UtV

⊤
t − X∥2F (Ω\Λ)

end for
return Pr(UT−1V

⊤
T + UTV

⊤
T−1 − UT−1V

⊤
T−1)

Estimating the Number of Corrupted Entries
Problem: Finding a tight upper bound on the true number of corrupted entries k∗.
Observation: Empirically, the estimates Λt of the set of corrupted entries converge if
and only if k ≤ k∗.
Our Solution: Binary search for k∗.
Formally, set kmin = 0 and kmax = |Ω|/2. Run RGNMR with k = ⌊(kmin + kmax)/2⌋.
If Λt converged, update kmin = k . Otherwise, set kmax = k . Run till convergence.

Assumptions for Theoretical Analysis

The underlying matrix L∗ has an incoherence parameter µ.

[Bernoulli Model] Each entry of X is independently observed with probability p.

In each row and column, the fraction of observed entries which are corrupted is
bounded by α ∈ (0, 1).

We denote by M(n1, n2, r , µ, κ) the set of n1 × n2 matrices of rank r , incoherence
parameter µ and condition number κ.

Theorem (Informal)

Let X = L∗ + S∗, where L∗ ∈ M(n1, n2, r , µ, κ), n1 ≥ n2. There exist constants
C , cα such that : If the fraction of corrupted entries is small enough, α < 1

cαrµκ
and

the probability to observe an entry is high enough, p ≥ Cµr
n2

max{log n1, µrκ2}, then
w.p. at least 1− 6

n1
, RGNMR with suitable initialization converges linearly to L∗.

Simulations Results
L∗ is a rank 5 matrix of size 3200× 400. The fraction of corrupted entries is α = 5%.
The oversampling ratio is |Ω|

r ·(n1+n2−r) = 12 and the condition number is κ = 2. For any

RMC method which outputs L̂, we compute two performance measures:

(i) Median relative reconstruction error rel-RMSE = ∥L̂−L∗∥F
∥L∗∥F ;

(ii) Failure probability, P(rel-RMSE > 10−3), error bars of 95% confidence interval.
RGNMR is given the true number of corrupted entries k∗ while RGNMR-BS is given an
estimate of k∗ obtained by our binary search scheme.
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Figure: Performance as a function of the oversampling ratio |Ω|
r ·(n1+n2−r).
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Figure: Performance under overparameterization. The input rank is 5 + i for i ∈ [0, 5].
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Figure: Performance as a function of the condition number κ.

Additionally RGNMR can handle a large fraction of corrupted entries, non uniform
sampling, additive noise and high rank matrices.

Background Extraction
RGNMR also performs well on a real dataset involving background extraction in a video.
This is a standard benchmark for RMC methods. The frames in the video can be
decomposed to a low rank matrix corresponding to the static background plus a
sparse matrix corresponding to the moving foreground.

(a) Original Image (b) Sampled Image (c) RGNMR

Figure: Background extraction for “Hall” video data. The frames are recovered from 5% of the original
entries with an input rank of r = 1.

Comparison to Other Recovery Guarantees

Method

Type
Method

Sample Complexity

(pn2 ≥)

Corruption Rate

(α ≤)

Factorization
Based

Zheng and Lafferty 2016 max{µr log n1, µ
2r2κ2} No Corruption

Tong, Ma, and Chi 2021 Fully Observed 1

r
3
2µκ

Cai et al. 2024 Fully Observed 1

r
3
2µκ

Yi et al. 2016 µ2r 2κ4 log n1
1

rµκ2

RGNMR max{µr log n1, µ
2r2κ2} 1

rµκ

Full
Matrix

Cherapanamjeri, Gupta,

and Jain 2017
µ2r2 log2(µrσ∗

1) log
2 n1

1
rµ

T. Wang and Wei 2024 µ3r 3κ4log n1
1

r 2µ2κ2

Table: Recovery guarantees requirements up to constant factors. Weakest conditions in each type of
methods are in red bold.


