
Your Best Next Business Solut ion

Big Data In R

24/3/2010

Big Data In R

 R Works on RAM

 Causing Scalability issues

 Maximum length of an object is 2^31-1

 Some packages developed to help overcome this

problem

Source: http://cran.r-project.org/web/packages/RODBC/RODBC.pdf

Big Data In R

 RODBC Package

 biglm Package

 ff Package

 bigmemory package

 snow package

Source: http://cran.r-project.org/web/packages/RODBC/RODBC.pdf

RODBC Package

 Connecting to external DB from R to retrieve and handle data stored

in the DB

 RODBC package support connection to SQL-based database (DBMS)

such as: Oracle, SQL Server, SQLite, MySQL and more

 Require an ODBC driver which usually comes with the DBMS

 Windows offer an ODBC driver to flat files and Excel

 Supports client-server architecture

Source: http://cran.r-project.org/web/packages/RODBC/RODBC.pdf

RODBC Package

Defining DSN:

> odbcDriverConnect()

RODBC Package

Defining DSN:

> odbcDriverConnect()

RODBC Package

Main Commands:

odbcConnect(dsn, uid = "", pwd = "", ...)

odbcGetInfo(channel)

sqlColumns(channel, sqtable, …)

sqlFetch(channel, sqtable, ..., colnames = FALSE, rownames = TRUE)

sqlQuery(channel, query, errors = TRUE, ..., rows_at_time)

RODBC Package

Open connection:

> xf <- odbcConnect(dsn="SQL Server")

Read table:

> go<-sqlFetch(xf,sqtable="adult“,colnames=T)

> str(go)

data.frame': 32560 obs. of 15 variables:….

Alternatively:

> go1 <- sqlQuery(xf, "select * from samples.dbo.adult")

> str(go1)

data.frame': 32560 obs. of 15 variables:….

RODBC Package

This allow you to run any SQL command on the database

> sqlQuery(xf, "CREATE TABLE Rdemo (id INT IDENTITY,x1 float,x2 float)")

character(0)

> sqlColumns(xf,"RDemo")

TABLE_CAT TABLE_SCHEM TABLE_NAME COLUMN_NAME DATA_TYPE TYPE_NAME

1 Samples dbo RDemo Id 4 int identity

2 Samples dbo RDemo x1 6 float

3 Samples dbo RDemo x2 6 float ……..

RODBC Package

We can use R to run processes which are difficult or impossible in DBMS

Example: calculate lag values

> for (i in 1:10)

> {

> LagRDemo<-sqlQuery(xf,paste("SELECT * FROM Rdemo WHERE Id

BETWEEN ",(100000*(i-1)-10)," AND ",(100000*i), " ORDER BY Id"))

> add.val<-(i!=1)*10

>LagRDemo=cbind(LagRDemo[(add.val+1):(add.val+100000),],lagDF(La

gRDemo,10)[(add.val+1):(add.val+100000),2:3])

> sqlSave(xf, LagRDemo, append = (i!=1), rownames=F)

> }

RODBC Package

Example: calculate lag values

Biglm Package

Building Generalized linear models on big data

 Loading data into memory in chunks

 Processing the last chunk and updating the sufficient statistic

required for the model

 Disposes the last chunk and loading the next chunk

 Repeats until end of file

Biglm Package

library(biglm)

make.data<-function(filename, chunksize,...){

conn<-NULL

function(reset=FALSE){

if(reset){

if(!is.null(conn)) close(conn)

conn<<- file (description=filename, open="r")

} else{

rval<-read.csv(conn, nrows=chunksize,...)

if (nrow(rval)==0) {

close(conn)

conn<<-NULL

rval<-NULL

}

return(rval)

}}}

Biglm Package

> airpoll<-make.data("c:\\Rdemo.txt",chunksize=100000

,colClasses = list ("numeric","numeric","numeric")

,col.names = c("Id","x1","x2"))

> lmRDemo <-bigglm(Id~x1+x2,data=airpoll)

>summary(lmRDemo)

Large data regression model: bigglm(Id ~ x1 + x2, data = airpoll)

Sample size = 1e+06

Coef (95% CI) SE p

(Intercept) 499583.8466 498055.6924 501112.0007 764.0771 0.0000

x1 -603.1151 -2602.7075 1396.4774 999.7962 0.5464

x2 143.6304 -56.2982 343.5591 99.9643 0.1508

ff Package

 One of the main problems when dealing with large data set in R is

memory limitations

 On 32-bit OS the maximum amount of memory (i.e. virtual

memory space) is limited to 2-4 GB

 Therefore, one cannot store larger data into memory

 It is impracticable to handle data that is larger than the available

RAM for it drastically slows down performance.

ff Package

 The ff package offers file-based access to data sets that are too large to be

loaded into memory, along with a number of higher-level functions.

 It provides Memory-efficient storage of large data on disk and fast access

functions.

 The ff package provides data structures that are stored on disk but behave

as if they were in RAM by transparently mapping only a section (pagesize)

in main memory

 A solution to the memory limitation problem is given by considering only

parts of the data at a time, i.e. instead of loading the entire data set into

memory only chunks thereof are loaded upon request

ff Package

Source: www.r-project.org

ff Package

ff Package

> library (ff)

> N <- 1,000 # sample size #

> n <- 100 # chunk size #

> years <- 2000 : 2009

> types <- factor (c (" A " , " B " ," C "))

Creating a (one-dimensional) flat file :

> Year <- ff (years , vmode = 'ushort', length = N, update = FALSE ,

+ filename = " d:/tmp/Year.ff " , finalizer = "close")

> Year

ff (open) ushort length=1000 (1000)

[1] [2] [3] [4] [5] [996] [997] [998] [999] [1000]

0 0 0 0 0 : 0 0 0 0 0

ff Package

Modifying data:

> for (i in chunk (1, N, n))

+ Year [i] <- sample (years , sum (i) , TRUE)

> Year

ff (open) ushort length=1000 (1000)

[1] [2] [3] [4] [996] [997] [998] [999] [1000]

2001 2006 2007 2003 : 2002 2008 2007 2005 2003

ff Package

And the same for : Type

> Type <- ff (types , vmode = 'quad', length = N, update =FALSE ,

+ filename = " d:/tmp/Type.ff " , finalizer = "close")

> for (i in chunk (1, N, n))

+ Type [i] <- sample (types , sum (i) , TRUE)

> Type

ff (open) quad length=1000 (1000) levels: A B C

[1] [2] [3] [4] [996] [997] [998] [999] [1000]

A A B B : C C B A C

ff Package

create a data.frame

> x <- ffdf (Year = Year , Type = Type)

> x

ffdf (all open) dim=c(1000,2), dimorder=c(1,2) row.names=NULL

ffdf data

Year Type

1 2001 A

2 2006 A

3 2007 B

4 2003 B

: : :

996 2002 C

997 2008 C

998 2007 B

999 2005 A

1000 2003 C

>

ff Package

 The data used:

ASA 2009 Data Expo: Airline on-time performance

http://stat-computing.org/dataexpo/2009/

 The data consisted of details of flight arrival and departure for all

commercial flights within the USA, from October 1987 to April 2008.

 Nearly 120 million records, 29 variables (mostly integer-valued)

> x <- read.big.matrix(“AirlineDataAllFormatted.csv”, header=TRUE ,

+ type=“integer”, backingfile=“airline.bin”, descriptorfile=“airline.desc”,

+ extraCols=“age”)

Source: http://www.agrocampus-ouest.fr/math/useR-2009/slides/Emerson+Kane.pdf

ff Package

The challenge: find min() on extracted first column;

With bigmemory:

> system.time(min(x[,1], na.rm=TRUE))

user system elapsed

1.224 1.556 10.101

> system.time(min(x[,1], na.rm=TRUE))

user system elapsed

1.016 0.988 2.001

With ff:

> system.time(min(z[,1], na.rm=TRUE))

user system elapsed

2.188 1.360 10.697

> system.time(min(z[,1], na.rm=TRUE))

user system elapsed

1.504 0.820 2.323

Source: http://www.agrocampus-ouest.fr/math/useR-2009/slides/Emerson+Kane.pdf

ff Package

The challenge: random extractions

> theserows <- sample(nrow(x), 10000)

> thesecols <- sample(ncol(x), 10)

With bigmemory:

> system.time(a <- x[theserows, thesecols])

user system elapsed

1.612 0.020 64.136

With ff:

> system.time(a <- z[theserows, thesecols])

user system elapsed

1.796 0.092 60.574

Source: http://www.agrocampus-ouest.fr/math/useR-2009/slides/Emerson+Kane.pdf

bigmemory Package

 An R package which allows powerful and memory-efficient parallel

analyses and data mining of massive data sets.

 Permits storing large objects (matrices etc.) in memory (on the

RAM) using external pointer objects to refer to them.

 The data sets may also be file-backed, to easily manage and analyze

data sets larger than available RAM.

 Several R processes on the same computer can also share big

memory objects.

bigmemory Package

 BigMemory creates a variable X <- big.martix , such that X is a pointer to

the dataset that is saved in the RAM or on the hard drive.

 When a big.matrix, X , is passed as an argument to a function, it is

essentially providing call-byreference rather than call-by-value behavior

 Backingfile is the root name for the file(s) for the cache of X.

 Descriptorfile the name of the file to hold the filebacked description, for

subsequent use with attach.big.matrix

 attach.big.matrix creates a new big.matrix object which references

previously allocated shared memory or file-backed matrices.

bigmemory Package

 The default big.matrix is not shared across processes and is limited

to available RAM.

 A shared big.matrix has identical size constraints as the basic

big.matrix, but may be shared across separate R processes.

 A file-backed big.matrix may exceed available RAM by using hard

drive space, and may also be shared across processes.

 big.matrix (nrow, ncol, type = “integer”, ….)

 shared.big.matrix (nrow, ncol, type = “integer”, ….)

 filedbacked.big.matrix (nrow, ncol, type = “integer”, ….)

 read.big.matrix (filename, sep= , ….)

bigmemory Package

> library (bigmemory)

Creating A new BigMemory object

> X <- read.big.matrix (“BigMem.csv” ,type = “double” , backingfile =

“BigMem.bin” , descriptorfile = “BigMem.desc”, shared = TRUE)

> X

An object of class “big.matrix”

Slot "address":

<pointer: 0x0196d058>

bigmemory Package

> X [1:4 , 1:4]

[,1] [,2] [,3] [,4]

[1,] 100 200 300 400

[2,] 100 200 300 400

[3,] 100 200 300 400

[4,] 100 200 300 400

Creating an existing BigMemory object on a different machine

> Y <- attach.big.matrix ("BigMem.desc")

> Y

An object of class “big.matrix”

Slot "address":

<pointer: 0x01972b18>

bigmemory Package

> X [1,1] = 1111

> X [1:4 , 1:4]

[,1] [,2] [,3] [,4]

[1,] 1111 200 300 400

[2,] 100 200 300 400

[3,] 100 200 300 400

[4,] 100 200 300 400

On different R:

> Y [1:4 , 1:4]

[,1] [,2] [,3] [,4]

[1,] 1111 200 300 400

[2,] 100 200 300 400

[3,] 100 200 300 400

[4,] 100 200 300 400

bigmemory Package

> Z <- shared.big.matrix (1000 ,70, type = “double”)

> describe(Z)

$sharedType

[1] "SharedMemory"

$sharedName

[1] "d177ab0c-348c-484e-864f-53025015656e"

$nrow

[1] 1000

$ncol

[1] 70

$rowNames

NULL

$colNames

NULL

$type

[1] "double"

snow Package

 SimpleNetwork ofWorkstations

 An R package which supports simple parallel computing.

 The package provides high-level interface for using a workstation cluster for

parallel computations in R.

 Snow relies on the Master/Slave model of communcation:

 One device (master) controls one or more other devices (slaves)

 Note: communication is orders of magnitude slower than computation. For

efficient parallel computing a dedicated high-speed network is needed.

snow Package

Starting and Stopping clusters:

The way to Initialize slave R processes depends on system configuration,

for example:

> cl <- makeCluster(2, type = “SOCK")

Shut down the cluster and clean up any remaining connections

between machines:

> stopCluster (cl)

snow Package

clusterCall (cl, fun , ...)

clusterCall calls a specified function with identical arguments on each node in

the cluster.

The arguments to clusterCall are evaluated on the master, their values

transmitted to the slave nodes which execute the function call.

> myfunc <- function (x) { x + 1 }

> myfunc_argument <- 5

> clusterCall (cl, myfunc, myfunc_argument)

[[1]]

[1] 6

[[2]]

[1] 6

snow Package

Example: simulate random numbers

> clusterApply(cl,c(4,2),runif)

[[1]]

[1]0.33039294 0.59713787 0.03189395 0.90365799

[[2]]

[1]0.8329455 0.6620030

> system.time(clusterApply(cl,c(6000000,9000000),runif))

user system elapsed

5.03 0.94 11.31

> system.time(runif(15000000))

user system elapsed

5.11 0.12 5.47

